欢迎访问粉煤灰综合利用杂志期刊官方网站 联系电话:0311-86692425 / 85820046
粉煤灰综合利用杂志
Fly Ash Comprehensive Utilization
主管单位: 河北省建筑科学研究院有限公司
主办单位: 河北省建筑科学研究院有限公司

 ● 中国科技核心期刊(中国科技论文统计源期刊)
 ● 中国核心期刊(遴选)数据库期刊
 ● 全国性建材科技期刊
 ● 河北省优秀期刊  
过刊浏览
查看更多 >
信息动态
查看更多 >
基于支持向量机的岩爆预测研究与应用
Research on Rock Burst Prediction based on a Support Vector Machine
PDF全文阅读

吴   菡

 

( 镇江市京口区农业农村局 ,江苏 镇江 212000)

摘   要 :随着采矿 、水利、交通等领域向着深部发展,工程中岩爆问题频发 ,严重危害人员安全, 因此建立准确有效的岩爆预测模型至关重要。结合多种优化算法得到模型最优参数,构建了3 种基于支持向量机 (SVR)  理论的岩爆预测模型。依157 组国内外实测岩爆案例,以模型预测准确率为识别框架,综合新的模型预测结果评价指标(平均偏差)分析预测模型性能 ,使用数值模拟和工程应用两种方式,验证模型有效性。结果表明: 随着输入参数类别的增加,模型预测准确率也随着增加,遗传算法  (GA)  是 、粒子群算法  (PSO) 和麻雀搜索算法(SSA)对支持向量机有一定优化效果 ,麻雀搜索算法优化效果最佳,故基于优化的 SVR 岩爆预测模型是可靠有效的。

关键词:地下工程 ;岩爆 ;遗传算法  (GA) ;  粒子群算法  (PSO) ;  麻雀搜索算法  (SSA) ;  支持向量机

中图分类号:TU45           

文献标志码:A            

文章编号: 1005- 8249   (2024)  04- 0092- 06

 DOI:10. 19860/j.cnki.issn1005 - 8249.2024.04.016

 

WU Han

(Agricultural and Rural Bureau of Jingkou District ,  Zhenjiang    212000 ,  China)

Abstract:With the development of mining, water conservancy, transportation and other fields toward deeper areas, rock burst problems occur frequently in engineering, which seriously endanger the safety of personnel, so it is crucial to establish an accurate and effective rock burst prediction model. A rock burst prediction model based on support vector machine theory is constructed, and the optimal parameters of the model are obtained by combining the sparrow search algorithm. Relying on 157 groups of domestic and foreign measured rock burst cases, the model prediction accuracy is used as the identification framework, and the new model prediction results evaluation index (mean deviation) is integrated to analyze the prediction model performance, and both numerical simulation and engineering application are used to verify the effectiveness of the SSA-SVR model. The results show that the model prediction accuracy increases with the increase of input parameter categories. Genetic algorithm (GA), particle swarm algorithm (PSO) and sparrow search algorithm (SSA) have some optimization effect on support vector machines ,so the optimized SVR rock burst prediction model is reliable and effective.

Keywords: underground space;rock burst;genetic algorithm (GA);particle swarm optimization (PSO);sparrow search algorithm (SSA);support vector machine 


作者简介: 吴    菡  (1996—) ,   女 ,硕士 ,助理工程师 ,研 究方向:水利工程管理。

收稿日期:2022- 12- 21