2025 年 6月

降雨作用下缓倾岩质边坡滑移破坏机制研究

Design Parameter Analysis and Displacement Prediction of Deep Foundation Pit Engineering Based on Indoor Experiments

夏泽富,郝 忠

(江苏禹衡工程质量检测有限公司,盐城 224000)

摘 要:为探求降雨作用对缓倾岩质边坡滑移破坏机制,以某地区水库滑坡的软岩为地质原型,采用物理 模型试验与数值模拟相结合的方法,再现边坡受力、变形特性。研究结果表明:在降雨和开挖条件下,岩层首 先弯曲,随后发生平行于层理表面的张力破坏,继续弯曲和翻转导致弯曲张力失效,弯曲和开裂现象向斜坡上 部延伸,最终局部张力失效渗透到斜坡顶部,岩石沿表面向下滑动,造成边坡不稳定,成果可为类似工程提供 参考。

关键词:缓倾岩质边坡;有限离散元法;破坏机制;离心机模型 中图分类号:TV871 文献标志码:A 文章编号:1005-8249(2025)03-0096-05 DOI:10.19860/j.cnki.issn1005-8249.2025.03.018

XIA Zefu, HAO Zhong

(Jiangsu Yuheng Engineering Quality Inspection Co., Ltd., Yancheng 224000, China) Abstract: Investigating the rainfall effect on the sliding failure mechanism of inclined rock slopes, taking the soft rock from a reservoir landslide in a specific region as the geological prototype, physical modeling experiments combined with numerical simulations are conducted to reproduce the stress and deformation characteristics of the slope. The results indicate that, under conditions of rainfall and excavation, the rock layers initially experience bending, followed by tensile failures parallel to the bedding surfaces. Continued bending and overturning result in flexural – tensile failures, causing bending and cracking phenomena to extend toward the upper part of the slope. Ultimately, localized tensile failures propagate upward to the slope crest, causing rocks to slide downward along the surface and leading to slope instability. These findings provide valuable references for similar engineering projects.

Key words: gently inclined rock slope; finite discrete element method; failure mechanism; centrifuge mode

作者简介:夏泽富(1992—),男,本科,工程师,研究方向:水利工程,岩土工程勘察设计。

通信作者:郝 忠 (1983—),男,硕士,高级工程师,研 究方向:岩土工程。

收稿日期: 2024-12-20

0 引言

缓倾岩质边坡在多雨地区广泛分布,极易在降 雨诱发下发生滑移破坏,给工程建设和区域安全带 来隐患。

近年来,许多学者深入探讨了降雨作用下缓倾 岩质边坡滑移机理。赵印良^[1]通过数值模拟分析西 气东输管道陕西段边坡在自然及暴雨状态下的稳定 性,并针对滑坡灾害提出抗滑桩、挡墙和排水沟等 治理措施,治理后边坡稳定性显著提高;王忠鑫 等[2]分析了露天矿端帮煤炭开采的顺序和深度对边 坡稳定性的影响,提出了端帮开采的合理深度与监 测建议:后志坤^[3]探讨了水利水电施工中边坡开挖 支护技术的应用,研究了影响边坡稳定性的关键因 素、支护技术的分类及选择原则;孙斌等^[4]分析了 开挖扰动导致的变形机制及滑动面稳定性,提出通 过加固边坡、坡面防水和坡体排水等综合措施,可 有效改善风化卸荷边坡的稳定性;涂美义等^[5]通过 耦合数值模拟与现场监测技术,系统评估了顶冠峰 人工边坡在降雨工况下的稳定性,揭示了孔隙水压 力分布与变形演化规律,验证了多源数据融合分析 的可靠性; 刘付海^[6] 通过试验揭示易崩解泥岩具有 强崩解性、显著轴向膨胀及耐崩解指数稳定性,并 阐明降雨强度增大导致入渗率积水与饱和点提前, 入渗深度与降雨时长和强度正相关的规律; 丁天 等^[7]通过计算基坑边坡安全稳定系数,得出了安全 稳定系数随降雨强度增强而降低,不同降雨类型中 峰值型对边坡稳定性破坏作用最强,均匀型影响最 小的结论。在降雨诱发滑坡机制研究方面,国内外 学者已经取得了一定的成果。张海娜等^[8]通过离心 模型试验探究了块状 - 弯曲复合倾倒的破坏机制, 并通过 Matlab 编程验证了试验的准确性;杨豪等^[9] 通过在坡体内不同部位预置了切割岩层的非贯通裂 缝,开展离心模型试验,结果表明含陡缓倾结构面 的反倾岩坡破坏以折断面的形成为标志;李刚等^[10] 通过现场调查、平硐岩体结构统计等方法,揭示了 高陡边坡深部破裂的破坏类型及发育特征: 江巍 等^[11]建立 BP 神经网络实现了岩土体抗剪强度的逆 向迭代修正反演;林昀昭等^[12]通过对浅层滑坡的渗 流作用进行分析,发现降雨强度与降雨累积量在滑 坡启动中起到了关键作用;宋享桦等^[13]通过数值模 拟的方法研究了不同入渗边界条件下简单均质砂土 边坡失稳;冯学茂等^[14]通过野外观测和模型试验, 发现坡脚的开挖会显著加速降雨渗透引发的滑坡失 稳过程。此外,赵立都等[15]还结合地质雷达和三维 激光扫描技术,探索了滑坡的实时演化过程。

3 期

现有研究主要关注降雨入渗规律及其对边坡稳 定性的影响,对于缓倾岩质边坡在强降雨作用下的 具体滑移破坏过程及多因素协同机理仍缺乏系统研 究。基于此,以某地区水库滑坡的软岩为研究对象, 通过离心机试验模拟重力场下边坡的应力状态和变 形行为,并结合基于有限离散元法的数值模拟技术, 系统研究了降雨条件下边坡滑移破坏的机制及其影 响因素。研究成果为地质灾害防治与边坡工程管理 提供了科学依据和技术支持。

1 工程概况

某水库内一段防洪堤,堤顶至外侧河道的水平 距离约为 27 m。防洪堤的设计堤高为 46 m,坡率 1:1.5,堤坡表面已通过人工绿化进行一定程度的加 固,堤脚则未设置支挡或其他防护措施,整体运行 状况相对稳定。在清淤施工中,紧邻防洪堤堤脚一侧 被垂直开挖约4 m,对堤脚的稳定性产生了不利影响。 该段边坡整体倾斜约为 5°,潜在滑动面直径约 46 m, 拖曳边长约 14.2 m,前缘推进距离约 20.6 m,最大滑 动高度约 30.6 m。

2 试验与数值模拟方法

2.1 离心模型试验设计

模型及离心试验箱按照工程案例原型比例构建, 各因子比例见表1。模型采用厚度为10 cm 的预制软 岩试块,按需切割堆放成型,并使用类似黏接材料 模拟岩层间的黏结力。为保证整体强度均匀性,模 型表面覆盖薄膜养护5 d。

表 1 模型试验中所采用的比例因子 Table 1 The scale factor used in the model experiment

长度	密度	弹性模量	内摩擦角	泊松比
L/cm	$ ho/(kg/m^3)$	E/MPa	φ /(°)	μ
1/150	1/2	1/1.5	1/1	1/1

加载过程采用逐级提升离心加速度的方式,依次设置为30g、60g、90g和120g,每一阶段保持稳定5min后再继续加载,加载过程如图1所示。同时,通过可控气动喷雾系统,在模型边坡表面均匀喷洒细雾,模拟自然降雨过程,从而实现土体的逐步饱和并诱发潜在滑移。

为实现全过程的应力 - 应变响应监测,模型内 布设了 10 个应变计及 4 个接地压力传感器,监测不 同位置的变形与压力。监测点布设如图 2 所示,但其 中 Y2 与 Y9 在试验过程中损坏,未能获得有效数据。 同时配合图像测量技术获取相对位移矢量信息,为 后续分析提供形变参考依据。

2.2 数值分析模型

由图3可知,将物理模型划分为有限元网格,利 用有限元方法(FEM)描述系统行为;在相邻网格 间嵌入黏合剂裂纹单元,模拟材料界面相互作用; 结合有限元算法(描述整体变形)与离散元算法 (描述裂纹形成与传播),实现连续与不连续介质行 为的模拟。

建立边坡模型,模型的边界条件是确定左右底部的正常位移。左、右高度分别为46、4 m。在边坡内设置5个监测点,记录变形和应力变化。数值模型试验如图4所示,参数见表2。

表 2 数值模型试验参数 Table 2 Numerical model test parameters

工况	杨氏模 量/GPa	泊松比	密度 /(kg/m ³)	密度 内聚力 g/m ³) /MPa	摩擦角 抗拉强度 /(°) /MPa	最大静 滑动 摩擦角 摩擦角	剩余 摩擦角	抗裂能释放率 /(N/m)		断裂面值	法向接触		
			/(kg/m)			7 MII a	/(°)	/(°)	/(°)	I 型	Ⅱ型	/14	11日/14
表层 – 不降雨	2.25	0.30	2 450	1.15	45	1.3	50	45	36	2. 25 × 10^4	2. 15×10^4	2. 75 × 10^4	2.75 × 10^9
表层 – 降雨	2.00	0.25	2 550	1.10	35	1.2	40	33	25	1.40×10^4	1.05×10^4	2.35×10^4	2.35 × 10^{9}
里层 – 不降雨	2.25	0.30	2 450	1.15	45	1.3	42	30	22	2.25×10^4	1.75×10^4	1.75×10^4	1.75×10^{9}
里层 – 降雨	2.00	0.25	2 550	1.10	35	1.2	35	20	15	1.20×10^4	1.30×10^4	1.30×10^{4}	1.30×10^{9}

3 试验与数值分析结果

3.1 离心机模型试验结果分析

如图5所示,离心试验加速度随时间呈阶梯状变 化,各测试点土压力随时间和加速度的变化而变化。 在加载初期(30g前),T4土压力随着加载增大逐渐 增加,表明边坡顶部沉降,在90g时达到峰值,为 807.3 kPa;T3 土压力在加载 60g 前急剧增加,表明 边坡压实,且在 60 g时达到峰值,为1268 kPa;T2 土压力在 30g 前急剧增大,显示坡趾剪切力增大;从 60g 增至 90g 期间,T1 土压力降至 1317 kPa,表明边 坡损坏,坡脚部分损坏,出现小范围滑动及弯曲拉 伸裂纹。

加载初期(0~30g),垫岩倾斜,边坡后部沉降 变形,形成沉降槽及少量拉伸裂纹。随加速度增至 30g~60g,拉伸效应增强,边坡中部出现拉伸裂纹, 岩层趾部首次局部坍塌。60g~90g时,边坡上部发 育,岩层弯曲加剧,层间张力明显,产生间歇性张 力裂纹,导致广泛裂缝及第二次坍塌。120g后,沉 降弯曲加剧,边坡上部现大范围断裂。最终,低岩 层断裂导致空间堆积,边坡顶部岩层坍塌破碎,拉 伸裂纹扩展,滑动力超抗剪力,岩层迅速下滑。

图 5 各监测点土压力随时间变化曲线 Fig. 5 Soil pressure curve with time at each monitoring point

如图6所示,随着离心加速度的增加,各监测点 的应变总体呈增大趋势,90g时达到顶峰后逐渐减 小。Y10位于边坡顶部,其应变值在90g时达到峰值 620×10⁻⁶,随后减小,表明顶部岩体发生沉降并产 生拉伸裂缝。Y3 至 Y8 分布于边坡中部,应变值随 着加载逐渐增大,6个监测点在45g~70g时达到峰 值 (201×10⁻⁶~356×10⁻⁶不等),此时对应时间约为

图 6 各监测点应变随时间的变化曲线

Fig. 6 Curve of strain variation with time at each monitoring point

第25~30 min,随后下降,显示岩层发生滑动位错并 受到压实影响,同时边坡中部出现弯曲变形。

Y1 位于坡脚,其应变值最大,在120g 时达到 1 040×10⁻⁶,显示边坡内部应变集中。加载至 120g 后,Y1 应变出现波动,表明坡脚发生局部损 伤并释放部分能量,边坡破坏迹象显现。这些结果 揭示了边坡不同部位在加载过程中的力学响应及破 坏特征。

3.2 数值模型结果分析

如图 7 所示,边坡模型上监测点 1 和监测点 4 位 于潜在断裂面附近,因而在加载过程中表现出显著 的应力振荡变化。这种应力波动现象暗示了岩体在 该区域内受到了集中应力作用,伴随着不断的小规 模破裂和岩体重新调整。在后续加载过程中,随着 断裂面的逐渐扩展和边坡损伤的加剧,这两个监测 点的应力最终趋于零,说明边坡该区域的岩体已彻 底失去承载能力。

监测点2和3的应力曲线稳定,分别反映滑动面 上方和附近岩体的应力分布。点2应力小,因远离滑 动面;点3应力大,因近滑动面。监测点5坡面附近 应力低,显示岩体受损,承载能力弱,为边坡高危 区。各点应力曲线揭示:点1和4应力振荡趋零,表 明潜在断裂面岩体反复破裂调整;点2和3反映滑动 面应力变化;点5低应力证实坡面岩体脆弱。

如图8所示,边坡监测点的位移持续时间曲线可 以分为三个典型的阶段:监测点的位移初始阶段缓 慢增长,接着进入一个以恒定速率增长的中期阶段, 最后进入一个以较小速率稳步增长的后期阶段。距 离坡面越近的监测点,其位移增加的速度越快,位 移值也越大。这表明坡面附近的岩体在外界因素 (如降雨和开挖)的影响下更容易发生变形。靠近坡 脚的监测点位移增速快、幅度大。反倾层状软岩边 坡变形破坏多始于坡面,因岩层倾角与坡面反向易 弯曲倾倒。开挖加速变形,尤其坡脚开挖,近开挖 区变形早且幅度大。

4 结论

通过大规模物理离心模型试验和数值模拟,研 究了缓倾层状软岩边坡在降雨条件下的失稳机制得 到以下主要结论:

(1) 在坡度为 50°和倾角为 60°的条件下,随着 离心加速度从 0 逐渐增加到 120g,边坡失稳过程表 现为从局部变形发展至整体坍塌,且降雨诱导的失 稳过程快速而突然。

(2)数值模拟准确再现了岩层在重力和降雨作 用下的弯曲变形、拉伸破坏和倾倒过程,并揭示了 裂缝扩展路径与层理面倾角的相关性,验证了数值 方法的高精度和可靠性。

(3)结合试验和模拟,推演出反倾层状软岩边 坡的失稳演化过程,包括岩层弯曲、拉伸破坏、倾 倒、裂缝扩展和整体滑移,最终的边坡失稳。这为 理解类似边坡失稳机制及工程治理提供了技术 指导。

参考文献

- [1] 赵印良. 西气东输管道黄土边坡稳定性及其治理方案分析
 [J]. 粉煤灰综合利用, 2021, 35 (2): 52-55.
- [2] 王忠鑫,蔡忠超,王东.露天矿端帮压煤开采顺序及深度对边坡 稳定性的影响研究 [J].煤矿安全,2024,55 (12):180-187.
- [3] 后志坤. 水利水电施工过程中边坡开挖支护技术的应用研究 [J]. 水上安全, 2024, (22): 193-195.
- [4] 孙斌,许建军,段军邦.开挖扰动下的风化卸荷边坡变形分析及处 理措施[J].水利与建筑工程学报,2024,22 (6):155-160.
- [5] 涂美义,袁世宇,陈江军,等.不同降雨工况下的矿山修复工程 边坡稳定性评价 [J].地质科技通报,2024,43 (6):63-77.
- [6] 刘付海.强降雨条件下易崩解泥岩边坡失稳机理研究 [J].粉 煤灰综合利用, 2023, 37 (4): 37-41.
- [7] 丁天,裴晓峰,孙虎,等.降雨入渗对地下综合管廊基坑边坡 的影响[J].粉煤灰综合利用,2021,35(4):18-22.
- [8] 张海娜,胡瑞奇,常锦,等.反倾岩质边坡块状-弯曲复合倾 倒破坏分析方法研究 [J]. 岩石力学与工程学报,2023,42
 (6):1482-1496.
- [9] 杨豪,魏玉峰,裴向军,等. 含陡缓倾结构面反倾岩坡折断面 演化特征的离心试验研究 [J]. 岩土力学,2022,43 (5): 1215-1225.
- [10] 李刚,高柏松,徐骏.高陡边坡深部破裂岩体的变形模式及成因分析 [J].铁道工程学报,2020,37 (06):31-35,52.
- [11] 江巍,欧阳晔,闫金洲,等.边坡岩土体抗剪强度的逆向迭代 修正反演方法 [J].岩土力学,2022,43 (8):2287-2295.
- [12] 林昀昭,简文彬,赖增荣,等.基于现场原型测试的乔木覆盖 滑坡区根-土复合体力学性能研究[J].岩土力学,2024,45 (11):3423-3434.
- [13] 宋享桦,谭勇,陆烨,等.不同人渗边界条件下简单均质砂土 边坡失稳模型试验和数值模拟研究[J].岩石力学与工程学 报,2024,43 (5):1204-1218.
- [14] 冯学茂,刘敏,宋祉辰,等.基于失稳模量理论的降雨条件下 非饱和边坡流滑与滑移失稳机理研究[J].湖南大学学报 (自然科学版),2024,51 (3):81-91.
- [15] 赵立都,张双成,向中富,等.地面三维激光扫描点云应用于滑 坡监测中基准统一研究 [J].灾害学,2022,37 (2):84-88.