着土力掌

跨溶岩区域隧道施工围岩稳定性研究*

Study on Stability of Surrounding Rock in Tunnel Construction Across Karst Region

李 春

(广西交科集团有限公司,广西南宁 530007)

摘 要:为研究跨溶岩区域隧道位于掌子面前方的溶洞在隧道开挖过程中对隧道的影响规律,本文依托吾 排隧道实际工程,利用 FLAC 3D 软件进行数值建模与计算,分析不同围岩级别、溶洞水压下隧道围岩在施工过 程中的稳定性影响规律,得到以下结论:(1)在隧道开挖过程中,围岩级别越高,相同开挖步对应的最大主应 力与最小主应力值越大,围岩的变形位移值越小;溶洞水压越大,相同开挖步对应的最大主应力与最小主应力 值越大,围岩的变形位移值越大。(2)拱顶位置处的应力在开挖前期小幅波动,而后迅速增大再急剧减小,墙 脚位置处的主应力值在开挖前期保持相对稳定,而后变化率逐渐增大,仰拱位置处主应力值在开挖前期基本保 持不变,然后急剧增长;拱顶、仰拱位置处的位移在前期缓慢增加,开挖到一定深度时开始急剧增长。

关键词: 跨溶岩区域隧道; 围岩稳定性; 数值计算; FLAC 3D

中图分类号: U455 文献标志码: A 文章编号: 1005-8249 (2023) 03-0004-07 **DOI**:10.19860/j.cnki.issn1005-8249.2023.03.004

LI Chun

(Guangxi Transportation Science & Technology Group Co., Ltd., Nanning, 530007 China)

Abstract: In order to study the influence law of the cavern in front of the palm face of the tunnel in the tunnel excavation process, this paper relies on the actual project of the Wupai tunnel, and uses FLAC 3D software for numerical modeling and calculation to analyze the stability influence law of the tunnel surrounding rock in the construction process under different rock levels and cavern water pressure, and obtains the following conclusions: (1) In the tunnel excavation process, the higher the level of the surrounding rock, the greater the maximum principal stress and minimum principal stress values corresponding to the same excavation step, the smaller the deformation and displacement values of the surrounding rock; the greater the cavern water pressure, the greater the deformation and displacement values corresponding to the same excavation step, the greater the maximum principal stress at the top of the arch fluctuates slightly at the beginning of the excavation, then increases sharply; the primary stress at the foot of the wall remains relatively stable at the beginning of the excavation, then increases sharply; the displacement at the top of the arch and back of the arch increases slowly at the beginning, then starts to increase sharply when the excavation reaches a certain depth.

Keywords: tunnel across karst area; stability of surrounding rock; numerical calculation; FLAC 3D

*基金项目:广西科学研究与技术开发计划项目(桂科攻 1355008-3)。 作者简介:李春(1974—),男,硕士,高级工程师,从事公路设计和科研工作。

收稿日期: 2023-02-15

岩十力学

0 引言

随着我国经济的快速发展与隧道施工工艺的 进步,大量的公路、铁路线路均需进行大量的隧 道建设。我国目前已经成为世界上隧道数量最多、 规模最大、工程条件最复杂、技术发展最迅速的 国家[1]。我国西南地区分布有大面积的喀斯特地 貌, 喀斯特地区的岩层中含有侵蚀性很强的岩溶 水,会对可溶性岩石进行溶蚀作用,在喀斯特地 区修建隧道时,突水突泥和衬砌开裂变形甚至破 损的风险会大大增加。同时, 若隧道衬砌背后存 在岩溶空腔或管道,地下水汇聚到隧道衬砌背后 的岩溶空腔或管道中, 会产生巨大的水压荷载, 对隧道的衬砌结构造成威胁。目前对于岩溶地区 隧道围岩稳定性的研究已有了较多成果。童建军 等[2]为研究岩溶隧道的围岩分级问题,提出了岩 溶发育程度对隧道围岩分级指标修正值 ΔBQ**的计 算方法,结合隧道不同围岩亚级 BQ 值,提出了岩 溶隧道围岩定量分级方法。杨坤等[3]基于贵州岩 溶地区公路隧道实际工程,利用有限元数值方法 研究了侧上方含落水洞的隧道围岩的力学响应, 分析了落水洞距离隧道不同水平距离对隧道围岩 稳定性的影响。张京亮等[4]为研究隐伏溶洞对隧 道开挖的影响,利用 FLAC 3D 软件建立数值模型, 分析了溶洞的尺寸、隧道与溶洞的距离以及溶洞 与隧道的相对位置对隧道围岩应力场、应变场的 影响规律。曹林卫等^[5]利用 RFPA 软件对复合围 岩的破裂突水过程进行了数值模拟,分析了不同 厚度和不同类型的复合围岩的抗水压能力。陈秀 雯等^[6]依托云南某隧道实际工程,利用有限元软 件 MIDAS GTS NX 建立数值模型并进行数值计算, 分析了围岩及初期支护的稳定性,并提出相应的 工程措施。金美海等[7]利用理论方法建立圆形衬 砌顶部局部高水压与围岩压力联合作用的内力计 算模型,利用数值计算方法对不同水压力大小和 作用面积下的隧道衬砌进行受力计算分析。樊浩 博等^[8]为研究管道型溶腔中的高水压力对隧道衬 砌的影响,进行了富水管道型岩溶隧道衬砌结构 的模型试验、分析了不同溶腔位置及水头高度对 衬砌结构内力的影响,同时利用数值模拟进一步 研究了不同溶腔尺寸、位置和水头高度对衬砌内 力的影响。众多研究成果均表明, 岩溶隧道中溶 洞与隧道之间的相对位置及距离对隧道围岩的稳 定性具有较大的影响。邹洋等^[9]为研究岩溶隧道 的顶板安全厚度及稳定性问题,考虑围岩的自重 及隧道坡度等因素,建立判别方程,得到了岩溶 隧道的顶板安全厚度的计算公式,并对影响顶板 安全厚度的相关因素进行分析。王万锋等^[10]利用 FLAC 3D 建立了环向不同部位的溶洞与隧道间的 临界安全距离数值模型,分析围岩的级别、溶洞 水压以及溶洞尺寸对临界安全距离的影响。马国 民等[11]、肖喜等[12]还针对岩溶隧道在涌突水破坏 模式下的溶洞与隧道间的安全临界条件进行了研 究。已有的研究中,大多仅考虑隧道环向不同部 位的溶洞对隧道的影响,而考虑位于掌子面前方 的溶洞在隧道开挖过程中影响隧道稳定性的研究 较少。

鉴于此,本文依托柳州经合山至南宁高速公路项目中的吾排隧道实际工程,通过 FLAC 3D 软件进行建模与计算,研究位于掌子面前方的溶洞 在隧道开挖过程中对隧道的影响规律,分析不同 围岩级别、溶洞水压下隧道围岩在施工过程中的 稳定性影响规律,以期为实际隧道工程施工和后 续的研究做出贡献。

1 工程背景与数值建模

1.1 工程概况

本文以柳州经合山至南宁高速公路项目中的 吾排隧道实际工程为例,研究跨溶岩区域的隧道 施工围岩稳定性问题。隧址区位于来宾市忻城县 果遂乡,隧道全长约1700 m,最大埋深约570 m, 属于长隧道,隧址区为侵蚀低中山地貌,其地形 陡峭,地表水较贫乏,地下水主要由孔隙潜水、 裂隙水和岩溶水组成,主要由降雨进行补给。通 过地质勘察资料,隧址区的地层岩性主要为粉质 黏土、玄武岩、白云质灰岩、页岩、灰岩、砂岩, 地表存在明显的岩溶现象。隧址区内断层、褶皱 较发育,岩体节理裂隙发育,隧道范围内存在一

25

岩土力学

长条形向斜, 岩体结构破碎、岩溶发育, 属于蓄 水条件较好的聚水构造带。

1.2 数值模型建立

为研究位于掌子面前方的溶洞在隧道开挖过 程中对隧道的影响规律,利用 FLAC 3D 软件建立 数值模型,研究不同围岩级别和溶洞水压条件下 隧道围岩在施工过程中的稳定性影响规律。

模型依据实际隧道断面进行建立,为减小由 边界效应引起的计算误差,计算模型的尺寸为 120 m×48 m×95 m,其中 x 轴为水平方向, z 轴为 竖直方向, y 轴为隧道轴线方向,隧道埋深取为 45 m,隧道跨度为 16 m,高度为 10 m。隧道前方 溶洞简化为一圆柱体,在 xz 断面上的投影为半径 为 5 m 的圆形,在 y 轴方向上的投影长度为 6 m, 建立数值模型如图 1 所示。

1.3 计算参数与边界条件

围岩的本构模型采用摩尔-库伦弹塑性模型, 初期支护结构用 shell 单元进行模拟,厚度为

图 1 三维数值计算模型 Fig. 1 3D numerical calculation model

将初期支护结构中的钢筋与钢架的弹性模量等效 给混凝土。结合 JTG 3370.1-2018《公路隧道设计 规范》,选取的计算参数如表1所示。

边界条件及初始条件设置为:四周及底面约 束法向位移,初始地应力场仅为重力场,模型上 表面施加围岩自重荷载。初始地下水位线设在模 型顶部,为透水边界,掌子面设为透水边界,溶 洞内依据不同工况情况施加孔隙水压力。

	表 1	致 值计异	参致取值	
Fable 1	Values of	numerical	calculation	narameters

Table 1 Values of numerical calculation parameters								
材料	重度 / (kg/m ³)	孔隙率	弹性模量 /GPa	泊松比	黏聚力 /kPa	内摩擦角 /°	抗拉强度 /kPa	渗透系数 / (m²/Pa ^{-s})
围岩 I	25.0	0.40	11.0	0.24	1.2	43.0	0.6	6. 1×10 ⁻¹¹
围岩Ⅱ	24.0	0.40	9.0	0.26	1.0	41.0	0.5	6. 1×10 ⁻¹¹
围岩Ⅲ	23.0	0.40	7.0	0.28	0.8	39.0	0.4	6. 1×10 ⁻¹¹
围岩Ⅳ	22.0	0.40	5.0	0.30	0.6	37.0	0.3	6. 1×10 ⁻¹¹
初期支护	24.0	—	25.0	0.20	—	—		—

1.4 计算工况及过程

为研究位于掌子面前方的溶洞在隧道开挖过 程中对隧道的影响规律,本文考虑围岩级别和溶 洞水压2类影响因素设计正交试验,设计了7种计 算工况,如表2所示。

Table 2 Calculation conditions							
工况	围岩级别	溶洞水压/MPa					
1	Ι	1.0					
2	Ш	1.0					
3	Ш	1.0					
4	IV	1.0					
5	IV	0.6					
6	IV	1.4					
7	IV	1.8					

在模拟隧道开挖时,考虑到掌子面前方存在 充水溶洞,在开挖位置逐渐接近充水溶洞的过程 中,随着与充水溶洞的距离减小,隧道受到的影 响会逐渐增大,因此,在隧道开挖过程中应逐级 减小开挖步距,具体的隧道开挖过程如图2所示。

在溶洞靠近开挖面一侧 2 m 位置处截取一断 面,监测该断面特征点位置的应力、位移以及孔 隙水压力,考虑到隧道开挖面左右对称分布,故 仅监测一侧的数据即可,监测点在断面上的具体 位置如图 3 所示。

20 cm,本构模型采用线弹性模型,为便于建模,

2 围岩级别对围岩稳定性的影响

为研究围岩级别对围岩稳定性的影响,选取4 个级别的围岩进行计算,围岩的力学参数如表1 所示,溶洞水压为1.0 MPa。

2.1 不同围岩级别下围岩的应力变化规律

根据数值计算结果,得到隧道监测断面上各 特征点处围岩的最大、最小主应力曲线,如图 4 所示。

图 4 不同围岩级别下隧道开挖过程中监测断面围岩主应力变化情况 Fig. 4 Changes in the principal stress of surrounding rock at different levels during tunnel excavation

如图4(a)所示,拱顶位置处的围岩最大主 应力与最小主应力存在相似的变化规律: 主应力 值在前18开挖步过程中呈现较小幅度的增长,围 岩级别越高,相同开挖步对应的最大主应力与最 小主应力值越大,完成第19步后,最大主应力与 最小主应力急剧增大,完成第20步后,最大主应 力与最小主应力因开挖卸荷作用的影响而急剧减 小.不同围岩级别下的围岩最大主应力终值相差 较小,最大主应力终值随着围岩级别的升高而逐 渐增大。如图4(b)所示,墙脚位置处围岩主应 力的变化规律为: 在前9开挖步过程中最大主应 力值呈现较小幅度的增长, 围岩级别越高对应的 应力值越大, 第9开挖步后围岩应力开始释放, 最大主应力值的减小速率逐渐增大:最小主应力 在隧道开挖过程中呈现逐渐增大的趋势,且增大 速率随着隧道开挖逐渐增大,围岩级别越高对应 的应力增量越小。如图4(c)所示,仰拱位置处 围岩的最大主应力变化规律基本与墙脚位置处一 致:最小主应力在隧道开挖前期出现小幅度的波 动,随着隧道的开挖,不同级别围岩对应的应力 在不同开挖步释放,围岩级别越高时应力释放地 越晚。

2.2 不同围岩级别下围岩的位移变化规律

根据数值计算结果,得到隧道监测断面上特 征点的位移曲线,如图 5 所示。

图5 不同围岩级别下隧道开挖过程中监测断面围岩位移变化情况 Fig.5 Changes of displacement of surrounding rock in monitored sections during tunnel excavation under different levels of surrounding rock 如图5所示,在隧道开挖中,拱顶位置处的 围岩产生向下的位移,且位移变化量逐渐增大, 围岩级别越低,位移的增加速率越大,围岩级别 为Ⅰ、Ⅱ、Ⅲ、Ⅳ时对应的拱顶位置处最大位移 值分别为 0.81 mm、1.01 mm、1.49 mm、 3.21 mm, 围岩级别越高, 拱顶位置处的围岩竖向 位移值越小。仰拱位置处的围岩出现向上隆起的 位移, 位移变化量随着隧道开挖过程逐渐增大, 且围岩级别越低, 位移的增加速率越大, 围岩级 别为Ⅰ、Ⅱ、Ⅲ、Ⅳ时对应的仰拱位置处最大隆 起位移分别为 0.85 mm、1.07 mm、1.59 mm、 3.41 mm, 围岩级别越高, 仰拱位置处的围岩竖向 隆起值越小。右边墙位置处的围岩出现向左的水 平位移,即位移方向指向隧道内部,位移变化量 随着隧道开挖过程逐渐增大,围岩级别越低,位 移的增加速率越大、围岩级别为Ⅰ、Ⅱ、Ⅲ、Ⅳ 时对应的右边墙位置处最大水平位移分别为 0.16 mm、0.21 mm、0.28 mm、0.59 mm、围岩级 别越高、边墙位置处的围岩水平位移值越小。

3 溶洞水压对围岩稳定性的影响

为研究溶洞水压对围岩稳定性的影响,设置 0.6 MPa、1.0 MPa、1.4 MPa、1.8 MPa 四个梯度 的溶洞水压,其余参数保持不变。

3.1 不同溶洞水压下围岩的应力变化规律

根据数值计算结果,得到隧道监测断面上各 特征点处围岩的最大、最小主应力曲线,如图 6 所示。

如图 6 所示,拱顶位置处的围岩最大主应力 与最小主应力变化规律较为相似,主应力值在前 18 开挖步过程中呈现较小幅度的增长,溶洞水压 越大,相同开挖步对应的最大主应力与最小主应 力值越大,完成第 19 开挖步后,最大主应力与最 小主应力急剧增大,完成第 20 步后,最大主应力 与最小主应力因开挖卸荷作用的影响而急剧减小, 不同溶洞水压下的围岩最大主应力终值相差较小。 在墙脚位置处,前 9 开挖步过程中最大主应力值 呈现较小幅度的增长,第 9 开挖步后围岩应力开 始释放,当溶洞水压越大时,对应的应力释放越 早;最小主应力随隧道开挖不断增大,增长速率 也在逐渐增大,当溶洞水压越大时,对应的最小 主应力值越大。

(c) 围岩仰拱位置主应力变化

图 6 不同溶洞水压下隧道开挖过程中监测断面围岩主应力变化情况 Fig. 6 Change of principal stress of surrounding rock in monitoring section during tunnel excavation under different water pressure of karst cave

在仰拱位置处,隧道开挖前期最大主应力基 本保持不变,然后应力逐渐开始释放,应力的减 小速率逐渐增大,当溶洞水压越大时,对应的应 力释放越早,释放率也越大。在前18隧道开挖步 中,最小主应力出现小幅波动,在18开挖步完成 后,最小主应力值出现骤降,应力发生释放,且 溶洞水压越大对应的应力的释放率越大。

3.2 不同溶洞水压下围岩的位移变化规律 根据数值计算结果,得到隧道监测断面上特

征点的位移曲线,如图7所示

如图 7 所示,拱顶位置处的围岩出现向下的 位移,位移变化量随着隧道开挖过程逐渐增大, 溶洞水压为 0.6 MPa、1.0 MPa、1.4 MPa、 1.8 MPa时对应的拱顶位置处最大竖向位移分别为 1.49 mm、1.54 mm、2.11 mm、2.36 mm,溶洞水 压越大,对应拱顶位置处的围岩竖向位移值越大。 仰拱位置处的围岩出现向上的隆起位移,位移变 化量随着隧道开挖过程逐渐增大,溶洞水压为 0.6 MPa、1.0 MPa、1.4 MPa、1.8 MPa 时对应的 仰拱位置处最大隆起位移分别为 1.39 mm、 1.59 mm、2.41 mm、2.65 mm,溶洞水压越大, 对应仰拱位置处的围岩竖向隆起值越大。

3.3 不同溶洞水压下围岩的孔隙水压力变化规律

根据数值计算结果,得到隧道监测断面上特 征点的孔隙水压力变化曲线,如图 8 所示。

如图 8 所示, 在前 15 开挖步中, 拱顶、边墙 与仰拱位置处的围岩孔隙水压力均呈小幅增长的 趋势,且当溶洞水压越大时,对应的围岩孔隙水 压力增幅越大,在完成第 15 个开挖步后,围岩孔 隙水压力出现骤降,且当溶洞水压越大时,对应 的孔隙水压力消散速率越大,在完成隧道开挖后, 拱顶位置处的最终孔隙水压力消散为 0,而在边墙 与仰拱位置处,孔隙水压力未完全消散。

(c) 围岩仰拱位置主应力变化

图 8 不同溶洞水压下隧道开挖过程中监测断面围岩主应力变化情况 Fig. 8 Change of principal stress of surrounding rock in monitoring section during tunnel excavation under different water pressure of karst cave

4 结论

本文依托柳州经合山至南宁高速公路项目中 的吾排隧道实际工程,通过 FLAC 3D 软件进行建 模与计算,研究位于掌子面前方的溶洞在隧道开 挖过程中对隧道的影响规律,分析不同围岩级别、 溶洞水压下隧道围岩在施工过程中的稳定性影响 规律,得到如下结论:

(1)在隧道开挖过程中,围岩级别越高,相同开挖步对应的最大主应力与最小主应力值越大, 围岩的变形位移值越小;溶洞水压越大,相同开 挖步对应的最大主应力与最小主应力值越大,围 岩的变形位移值越大。

(2) 拱顶位置处的应力在开挖前期小幅波动, 而后迅速增大再急剧减小,墙脚位置处的主应力值在 开挖前期保持相对稳定,而后变化率逐渐增大,仰拱 位置处主应力值在开挖前期基本保持不变,然后急剧 增长;拱顶、仰拱位置处的位移在前期缓慢增加, 在开挖到一定深度时开始急剧增长。

参考文献

- [1] 王梦恕.中国盾构和掘进机隧道技术现状、存在的问题及 发展思路 [J].隧道建设,2014,34 (3):179-187.
- [2] 童建军,桂登斌,王明年,等.岩溶隧道围岩级别修正方法研究[J].隧道建设(中英文),2021,41 (S1): 99-107.
- [3] 杨坤,肖维民,王丽君,等.上伏落水洞岩溶隧道围岩力 学响应数值分析 [J].地下空间与工程学报,2021,17 (S2):637-644.
- [4] 张京亮,夏志杰,刘新荣,等.隐伏溶洞影响下隧道开挖
 稳定性数值模拟分析 [J].科学技术与工程,2022,22
 (13):5455-5462.
- [5] 曹林卫,黄明利,杨泽,等.隧道与溶洞间复合围岩抗水 压能力数值模拟[J].科学技术与工程,2022,22 (8): 3349-3357.
- [6] 陈秀雯,刘家奇,张浩,等.西南地区岩溶富水隧道坍塌 力学机理及处治措施[J].科学技术与工程,2021,21 (36):15639-15645.
- [7] 金美海,刘新荣,钟祖良.岩溶隧道拱顶局部水压作用下 衬砌受力特征研究 [J].地下空间与工程学报,2021,17 (4):1099-1105+1131.
- [8] 樊浩博,周定坤,刘勇,等.富水管道型岩溶隧道衬砌结构力学响应特征研究[J].岩土力学,2022,43 (7): 1884-1898.
- [9] 邹洋,彭立敏,张智勇,等.基于突变理论的岩溶隧道拱 顶安全厚度分析与失稳预测 [J].铁道科学与工程学报, 2021,18 (10): 2651-2659.
- [10] 王万锋,杨永泰,陆钰铨,等.喀斯特地貌区隧道与隐伏 充填溶洞临界安全距离分析[J].中国岩溶,2023.1-12.
- [11] 马国民,张秀丽,杨华清.岩溶隧道突涌水机制及安全临 界条件研究 [J].安全与环境工程,2022,29 (2): 64-70.
- [12] 肖喜,赵晓彦,张巨峰,等.岩溶隧道涌突水破坏模式分类及防突厚度研究 [J].工程地质学报,2022,30 (2): 459-474.